hekate-emmc/bdk/storage/sdmmc_driver.c
CTCaer d258c82d52 bdk: sdmmc: add UHS DDR200 support
The bdk flag BDK_SDMMC_UHS_DDR200_SUPPORT can be used to enable it.

SD Card DDR200 (DDR208) support

Proper procedure:
1. Check that Vendor Specific Command System is supported.
   Used as Enable DDR200 Bus.
2. Enable DDR200 bus mode via setting 14 to Group 2 via CMD6.
   Access Mode group is left to default 0 (SDR12).
3. Setup clock to 200 or 208 MHz.
4. Set host to DDR bus mode that supports such high clocks.
   Some hosts have special mode, others use DDR50 and others HS400.
5. Execute Tuning.

The true validation that this value in Group 2 activates it, is that DDR50 bus
and clocks/timings work fully after that point.

On Tegra X1, that can be done with DDR50 host mode.
Tuning though can't be done automatically on any DDR mode.
So it needs to be done manually and selected tap will be applied from the
biggest sampling window.

Finally, all that simply works, because the marketing materials for DDR200 are
basically overstatements to sell the feature. DDR200 is simply SDR104 in DDR mode,
so sampling on rising and falling edge and with variable output data window.
It can be supported by any host that is fast enough to support DDR at 200/208MHz
and can do hw/sw tuning for finding the proper sampling window in that mode.

Using a SDMMC controller on DDR200 mode at 400MHz, has latency allowance implications. The MC/EMC must be clocked enough to be able to serve the requests in time (512B in 1.28 ns).
2023-03-31 08:54:13 +03:00

1570 lines
39 KiB
C

/*
* Copyright (c) 2018 naehrwert
* Copyright (c) 2018-2023 CTCaer
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <string.h>
#include <storage/mmc.h>
#include <storage/sdmmc.h>
#include <gfx_utils.h>
#include <power/max7762x.h>
#include <soc/bpmp.h>
#include <soc/clock.h>
#include <soc/gpio.h>
#include <soc/hw_init.h>
#include <soc/pinmux.h>
#include <soc/pmc.h>
#include <soc/timer.h>
#include <soc/t210.h>
//#define DPRINTF(...) gfx_printf(__VA_ARGS__)
//#define ERROR_EXTRA_PRINTING
#define DPRINTF(...)
#ifdef BDK_SDMMC_EXTRA_PRINT
#define ERROR_EXTRA_PRINTING
#endif
/*! SCMMC controller base addresses. */
static const u32 _sdmmc_bases[4] = {
0x700B0000,
0x700B0200,
0x700B0400,
0x700B0600,
};
int sdmmc_get_io_power(sdmmc_t *sdmmc)
{
u32 p = sdmmc->regs->pwrcon;
if (!(p & SDHCI_POWER_ON))
return SDMMC_POWER_OFF;
if (p & SDHCI_POWER_180)
return SDMMC_POWER_1_8;
if (p & SDHCI_POWER_330)
return SDMMC_POWER_3_3;
return -1;
}
static int _sdmmc_set_io_power(sdmmc_t *sdmmc, u32 power)
{
switch (power)
{
case SDMMC_POWER_OFF:
sdmmc->regs->pwrcon &= ~SDHCI_POWER_ON;
break;
case SDMMC_POWER_1_8:
sdmmc->regs->pwrcon = SDHCI_POWER_180;
break;
case SDMMC_POWER_3_3:
sdmmc->regs->pwrcon = SDHCI_POWER_330;
break;
default:
return 0;
}
if (power != SDMMC_POWER_OFF)
sdmmc->regs->pwrcon |= SDHCI_POWER_ON;
return 1;
}
u32 sdmmc_get_bus_width(sdmmc_t *sdmmc)
{
u32 h = sdmmc->regs->hostctl;
if (h & SDHCI_CTRL_8BITBUS) // eMMC only (or UHS-II).
return SDMMC_BUS_WIDTH_8;
if (h & SDHCI_CTRL_4BITBUS) // SD only.
return SDMMC_BUS_WIDTH_4;
return SDMMC_BUS_WIDTH_1;
}
void sdmmc_set_bus_width(sdmmc_t *sdmmc, u32 bus_width)
{
u32 host_control = sdmmc->regs->hostctl & ~(SDHCI_CTRL_4BITBUS | SDHCI_CTRL_8BITBUS);
if (bus_width == SDMMC_BUS_WIDTH_1)
sdmmc->regs->hostctl = host_control;
else if (bus_width == SDMMC_BUS_WIDTH_4)
sdmmc->regs->hostctl = host_control | SDHCI_CTRL_4BITBUS; // SD only.
else if (bus_width == SDMMC_BUS_WIDTH_8)
sdmmc->regs->hostctl = host_control | SDHCI_CTRL_8BITBUS; // eMMC only (or UHS-II).
}
void sdmmc_save_tap_value(sdmmc_t *sdmmc)
{
sdmmc->venclkctl_tap = (sdmmc->regs->venclkctl & 0xFF0000) >> 16;
sdmmc->venclkctl_set = 1;
}
static int _sdmmc_config_tap_val(sdmmc_t *sdmmc, u32 type)
{
const u32 dqs_trim_val = 40; // 24 if HS533/HS667.
const u8 tap_values_t210[4] = { 4, 0, 3, 0 };
u32 tap_val = 0;
if (type == SDHCI_TIMING_MMC_HS400)
sdmmc->regs->vencapover = (sdmmc->regs->vencapover & 0xFFFFC0FF) | (dqs_trim_val << 8);
sdmmc->regs->ventunctl0 &= ~SDHCI_TEGRA_TUNING_TAP_HW_UPDATED;
if (type == SDHCI_TIMING_MMC_HS400)
{
if (!sdmmc->venclkctl_set)
return 0;
tap_val = sdmmc->venclkctl_tap;
}
else
tap_val = sdmmc->t210b01 ? 11 : tap_values_t210[sdmmc->id];
sdmmc->regs->venclkctl = (sdmmc->regs->venclkctl & 0xFF00FFFF) | (tap_val << 16);
return 1;
}
static void _sdmmc_commit_changes(sdmmc_t *sdmmc)
{
(void)sdmmc->regs->clkcon;
}
static void _sdmmc_pad_config_fallback(sdmmc_t *sdmmc, u32 power)
{
_sdmmc_commit_changes(sdmmc);
switch (sdmmc->id)
{
case SDMMC_1: // 33 Ohm 2X Driver.
if (power == SDMMC_POWER_OFF)
break;
u32 sdmmc1_pad_cfg = APB_MISC(APB_MISC_GP_SDMMC1_PAD_CFGPADCTRL) & 0xF8080FFF;
if (sdmmc->t210b01)
sdmmc1_pad_cfg |= (0x808 << 12); // Up: 8, Dn: 8. For 33 ohm.
else if (power == SDMMC_POWER_1_8)
sdmmc1_pad_cfg |= (0xB0F << 12); // Up: 11, Dn: 15. For 33 ohm.
else if (power == SDMMC_POWER_3_3)
sdmmc1_pad_cfg |= (0xC0C << 12); // Up: 12, Dn: 12. For 33 ohm.
APB_MISC(APB_MISC_GP_SDMMC1_PAD_CFGPADCTRL) = sdmmc1_pad_cfg;
(void)APB_MISC(APB_MISC_GP_SDMMC1_PAD_CFGPADCTRL); // Commit write.
break;
case SDMMC_2:
if (sdmmc->t210b01)
APB_MISC(APB_MISC_GP_EMMC2_PAD_CFGPADCTRL) = (APB_MISC(APB_MISC_GP_EMMC2_PAD_CFGPADCTRL) & 0xF8080FFF) | 0xA0A000;
else
APB_MISC(APB_MISC_GP_EMMC2_PAD_CFGPADCTRL) = (APB_MISC(APB_MISC_GP_EMMC2_PAD_CFGPADCTRL) & 0xFFFFC003) | 0x1040; // PU:16, PD:16.
(void)APB_MISC(APB_MISC_GP_EMMC2_PAD_CFGPADCTRL);
break;
case SDMMC_4: // 50 Ohm 2X Driver. PU:16, PD:16, B01: PU:10, PD:10.
APB_MISC(APB_MISC_GP_EMMC4_PAD_CFGPADCTRL) = (APB_MISC(APB_MISC_GP_EMMC4_PAD_CFGPADCTRL) & 0xFFFFC003) |
(sdmmc->t210b01 ? 0xA28 : 0x1040);
(void)APB_MISC(APB_MISC_GP_EMMC4_PAD_CFGPADCTRL); // Commit write.
break;
}
}
static void _sdmmc_autocal_execute(sdmmc_t *sdmmc, u32 power)
{
bool should_enable_sd_clock = false;
if (sdmmc->regs->clkcon & SDHCI_CLOCK_CARD_EN)
{
should_enable_sd_clock = true;
sdmmc->regs->clkcon &= ~SDHCI_CLOCK_CARD_EN;
}
// Enable E_INPUT (SD) or Disable E_PWRD (eMMC) power.
if (!(sdmmc->regs->sdmemcmppadctl & SDHCI_TEGRA_PADCTRL_E_INPUT_PWRD))
{
sdmmc->regs->sdmemcmppadctl |= SDHCI_TEGRA_PADCTRL_E_INPUT_PWRD;
_sdmmc_commit_changes(sdmmc);
usleep(1);
}
// Enable auto calibration and start auto configuration.
sdmmc->regs->autocalcfg |= SDHCI_TEGRA_AUTOCAL_ENABLE | SDHCI_TEGRA_AUTOCAL_START;
_sdmmc_commit_changes(sdmmc);
usleep(2);
u32 timeout = get_tmr_ms() + 10;
while (sdmmc->regs->autocalsts & SDHCI_TEGRA_AUTOCAL_ACTIVE)
{
if (get_tmr_ms() > timeout)
{
timeout = 0; // Set timeout to 0 if we timed out.
break;
}
}
#ifdef ERROR_EXTRA_PRINTING
// Check if Comp pad is open or short to ground.
// SDMMC1: CZ pads - T210/T210B01: 7-bit/5-bit. SDMMC2/4: LV_CZ pads - 5-bit.
u8 code_mask = (sdmmc->t210b01 || sdmmc->id != SDMMC_1) ? 0x1F : 0x7F;
u8 autocal_pu_status = sdmmc->regs->autocalsts & code_mask;
if (!autocal_pu_status)
EPRINTFARGS("SDMMC%d: Comp Pad short to gnd!", sdmmc->id + 1);
else if (autocal_pu_status == code_mask)
EPRINTFARGS("SDMMC%d: Comp Pad open!", sdmmc->id + 1);
#endif
// In case auto calibration fails, we load suggested standard values.
if (!timeout)
{
sdmmc->regs->autocalcfg &= ~SDHCI_TEGRA_AUTOCAL_ENABLE;
_sdmmc_pad_config_fallback(sdmmc, power);
}
// Disable E_INPUT (SD) or enable E_PWRD (eMMC) to conserve power.
sdmmc->regs->sdmemcmppadctl &= ~SDHCI_TEGRA_PADCTRL_E_INPUT_PWRD;
if (should_enable_sd_clock)
sdmmc->regs->clkcon |= SDHCI_CLOCK_CARD_EN;
}
static int _sdmmc_dll_cal_execute(sdmmc_t *sdmmc)
{
int result = 1, should_disable_sd_clock = 0;
if (!(sdmmc->regs->clkcon & SDHCI_CLOCK_CARD_EN))
{
should_disable_sd_clock = 1;
sdmmc->regs->clkcon |= SDHCI_CLOCK_CARD_EN;
}
// Add -4 TX_DLY_CODE_OFFSET if HS533/HS667.
// if (sdmmc->id == SDMMC_4 && sdmmc->card_clock > 208000)
// sdmmc->regs->vendllctl0 = sdmmc->regs->vendllctl0 &= 0xFFFFC07F | (0x7C << 7);
sdmmc->regs->vendllcalcfg |= SDHCI_TEGRA_DLLCAL_CALIBRATE;
_sdmmc_commit_changes(sdmmc);
u32 timeout = get_tmr_ms() + 5;
while (sdmmc->regs->vendllcalcfg & SDHCI_TEGRA_DLLCAL_CALIBRATE)
{
if (get_tmr_ms() > timeout)
{
result = 0;
goto out;
}
}
timeout = get_tmr_ms() + 10;
while (sdmmc->regs->vendllcalcfgsts & SDHCI_TEGRA_DLLCAL_ACTIVE)
{
if (get_tmr_ms() > timeout)
{
result = 0;
goto out;
}
}
out:;
if (should_disable_sd_clock)
sdmmc->regs->clkcon &= ~SDHCI_CLOCK_CARD_EN;
return result;
}
static void _sdmmc_reset_cmd_data(sdmmc_t *sdmmc)
{
sdmmc->regs->swrst |= SDHCI_RESET_CMD | SDHCI_RESET_DATA;
_sdmmc_commit_changes(sdmmc);
u32 timeout = get_tmr_ms() + 2000;
while ((sdmmc->regs->swrst & (SDHCI_RESET_CMD | SDHCI_RESET_DATA)) && get_tmr_ms() < timeout)
;
}
static void _sdmmc_reset_all(sdmmc_t *sdmmc)
{
sdmmc->regs->swrst |= SDHCI_RESET_ALL;
_sdmmc_commit_changes(sdmmc);
u32 timeout = get_tmr_ms() + 2000;//100ms
while ((sdmmc->regs->swrst & SDHCI_RESET_ALL) && get_tmr_ms() < timeout)
;
}
int sdmmc_setup_clock(sdmmc_t *sdmmc, u32 type)
{
// Disable the SD clock if it was enabled, and reenable it later.
bool should_enable_sd_clock = false;
if (sdmmc->regs->clkcon & SDHCI_CLOCK_CARD_EN)
{
should_enable_sd_clock = true;
sdmmc->regs->clkcon &= ~SDHCI_CLOCK_CARD_EN;
}
_sdmmc_config_tap_val(sdmmc, type);
_sdmmc_reset_cmd_data(sdmmc);
switch (type)
{
case SDHCI_TIMING_MMC_ID:
case SDHCI_TIMING_MMC_LS26:
case SDHCI_TIMING_SD_ID:
case SDHCI_TIMING_SD_DS12:
sdmmc->regs->hostctl &= ~SDHCI_CTRL_HISPD;
sdmmc->regs->hostctl2 &= ~SDHCI_CTRL_VDD_180;
break;
case SDHCI_TIMING_MMC_HS52:
case SDHCI_TIMING_SD_HS25:
sdmmc->regs->hostctl |= SDHCI_CTRL_HISPD;
sdmmc->regs->hostctl2 &= ~SDHCI_CTRL_VDD_180;
break;
case SDHCI_TIMING_MMC_HS200:
case SDHCI_TIMING_UHS_SDR50: // T210 Errata: the host must be set to SDR104 to WAR a CRC issue.
case SDHCI_TIMING_UHS_SDR104:
case SDHCI_TIMING_UHS_SDR82:
case SDHCI_TIMING_MMC_HS100:
sdmmc->regs->hostctl2 = (sdmmc->regs->hostctl2 & (~SDHCI_CTRL_UHS_MASK)) | UHS_SDR104_BUS_SPEED;
sdmmc->regs->hostctl2 |= SDHCI_CTRL_VDD_180;
break;
case SDHCI_TIMING_MMC_HS400:
sdmmc->regs->hostctl2 = (sdmmc->regs->hostctl2 & (~SDHCI_CTRL_UHS_MASK)) | HS400_BUS_SPEED;
sdmmc->regs->hostctl2 |= SDHCI_CTRL_VDD_180;
break;
case SDHCI_TIMING_UHS_SDR25:
sdmmc->regs->hostctl2 = (sdmmc->regs->hostctl2 & (~SDHCI_CTRL_UHS_MASK)) | UHS_SDR25_BUS_SPEED;
sdmmc->regs->hostctl2 |= SDHCI_CTRL_VDD_180;
break;
case SDHCI_TIMING_UHS_SDR12:
sdmmc->regs->hostctl2 = (sdmmc->regs->hostctl2 & (~SDHCI_CTRL_UHS_MASK)) | UHS_SDR12_BUS_SPEED;
sdmmc->regs->hostctl2 |= SDHCI_CTRL_VDD_180;
break;
case SDHCI_TIMING_UHS_DDR50:
#ifdef BDK_SDMMC_UHS_DDR200_SUPPORT
case SDHCI_TIMING_UHS_DDR200:
#endif
sdmmc->regs->hostctl2 = (sdmmc->regs->hostctl2 & (~SDHCI_CTRL_UHS_MASK)) | UHS_DDR50_BUS_SPEED;
sdmmc->regs->hostctl2 |= SDHCI_CTRL_VDD_180;
break;
}
_sdmmc_commit_changes(sdmmc);
u32 clock;
u16 divisor;
clock_sdmmc_get_card_clock_div(&clock, &divisor, type);
clock_sdmmc_config_clock_source(&clock, sdmmc->id, clock);
sdmmc->card_clock = (clock + divisor - 1) / divisor;
//if divisor != 1 && divisor << 31 -> error
u16 div_lo = divisor >> 1;
u16 div_hi = 0;
if (div_lo > 0xFF)
div_hi = div_lo >> SDHCI_DIV_LO_SHIFT;
sdmmc->regs->clkcon = (sdmmc->regs->clkcon & ~(SDHCI_DIV_MASK | SDHCI_DIV_HI_MASK)) |
(div_lo << SDHCI_DIV_LO_SHIFT) | (div_hi << SDHCI_DIV_HI_SHIFT);
// Enable the SD clock again.
if (should_enable_sd_clock)
sdmmc->regs->clkcon |= SDHCI_CLOCK_CARD_EN;
if (type == SDHCI_TIMING_MMC_HS400)
return _sdmmc_dll_cal_execute(sdmmc);
return 1;
}
static void _sdmmc_card_clock_enable(sdmmc_t *sdmmc)
{
// Recalibrate conditionally.
if (sdmmc->manual_cal && !sdmmc->powersave_enabled)
_sdmmc_autocal_execute(sdmmc, sdmmc_get_io_power(sdmmc));
if (!sdmmc->powersave_enabled)
{
if (!(sdmmc->regs->clkcon & SDHCI_CLOCK_CARD_EN))
sdmmc->regs->clkcon |= SDHCI_CLOCK_CARD_EN;
}
sdmmc->card_clock_enabled = 1;
}
static void _sdmmc_sd_clock_disable(sdmmc_t *sdmmc)
{
sdmmc->card_clock_enabled = 0;
sdmmc->regs->clkcon &= ~SDHCI_CLOCK_CARD_EN;
}
void sdmmc_card_clock_powersave(sdmmc_t *sdmmc, int powersave_enable)
{
// Recalibrate periodically for SDMMC1.
if (sdmmc->manual_cal && !powersave_enable && sdmmc->card_clock_enabled)
_sdmmc_autocal_execute(sdmmc, sdmmc_get_io_power(sdmmc));
sdmmc->powersave_enabled = powersave_enable;
if (powersave_enable)
{
if (sdmmc->regs->clkcon & SDHCI_CLOCK_CARD_EN)
sdmmc->regs->clkcon &= ~SDHCI_CLOCK_CARD_EN;
return;
}
if (sdmmc->card_clock_enabled)
if (!(sdmmc->regs->clkcon & SDHCI_CLOCK_CARD_EN))
sdmmc->regs->clkcon |= SDHCI_CLOCK_CARD_EN;
}
static int _sdmmc_cache_rsp(sdmmc_t *sdmmc, u32 *rsp, u32 size, u32 type)
{
switch (type)
{
case SDMMC_RSP_TYPE_1:
case SDMMC_RSP_TYPE_3:
case SDMMC_RSP_TYPE_4:
case SDMMC_RSP_TYPE_5:
if (size < 4)
return 0;
rsp[0] = sdmmc->regs->rspreg0;
break;
case SDMMC_RSP_TYPE_2:
if (size < 0x10)
return 0;
// CRC is stripped, so shifting is needed.
u32 tempreg;
for (int i = 0; i < 4; i++)
{
switch(i)
{
case 0:
tempreg = sdmmc->regs->rspreg3;
break;
case 1:
tempreg = sdmmc->regs->rspreg2;
break;
case 2:
tempreg = sdmmc->regs->rspreg1;
break;
case 3:
tempreg = sdmmc->regs->rspreg0;
break;
}
rsp[i] = tempreg << 8;
if (i != 0)
rsp[i - 1] |= (tempreg >> 24) & 0xFF;
}
break;
default:
return 0;
}
return 1;
}
int sdmmc_get_rsp(sdmmc_t *sdmmc, u32 *rsp, u32 size, u32 type)
{
if (!rsp || sdmmc->expected_rsp_type != type)
return 0;
switch (type)
{
case SDMMC_RSP_TYPE_1:
case SDMMC_RSP_TYPE_3:
case SDMMC_RSP_TYPE_4:
case SDMMC_RSP_TYPE_5:
if (size < 4)
return 0;
rsp[0] = sdmmc->rsp[0];
break;
case SDMMC_RSP_TYPE_2:
if (size < 16)
return 0;
rsp[0] = sdmmc->rsp[0];
rsp[1] = sdmmc->rsp[1];
rsp[2] = sdmmc->rsp[2];
rsp[3] = sdmmc->rsp[3];
break;
default:
return 0;
}
return 1;
}
static int _sdmmc_wait_cmd_data_inhibit(sdmmc_t *sdmmc, bool wait_dat)
{
_sdmmc_commit_changes(sdmmc);
u32 timeout = get_tmr_ms() + 2000;
while (sdmmc->regs->prnsts & SDHCI_CMD_INHIBIT)
if (get_tmr_ms() > timeout)
{
_sdmmc_reset_cmd_data(sdmmc);
return 0;
}
if (wait_dat)
{
timeout = get_tmr_ms() + 2000;
while (sdmmc->regs->prnsts & SDHCI_DATA_INHIBIT)
if (get_tmr_ms() > timeout)
{
_sdmmc_reset_cmd_data(sdmmc);
return 0;
}
}
return 1;
}
static int _sdmmc_wait_card_busy(sdmmc_t *sdmmc)
{
_sdmmc_commit_changes(sdmmc);
u32 timeout = get_tmr_ms() + 2000;
while (!(sdmmc->regs->prnsts & SDHCI_DATA_0_LVL))
if (get_tmr_ms() > timeout)
{
_sdmmc_reset_cmd_data(sdmmc);
return 0;
}
return 1;
}
static int _sdmmc_setup_read_small_block(sdmmc_t *sdmmc)
{
switch (sdmmc_get_bus_width(sdmmc))
{
case SDMMC_BUS_WIDTH_1:
return 0;
case SDMMC_BUS_WIDTH_4:
sdmmc->regs->blksize = 64;
break;
case SDMMC_BUS_WIDTH_8:
sdmmc->regs->blksize = 128;
break;
}
sdmmc->regs->blkcnt = 1;
sdmmc->regs->trnmod = SDHCI_TRNS_READ;
return 1;
}
static int _sdmmc_send_cmd(sdmmc_t *sdmmc, sdmmc_cmd_t *cmd, bool is_data_present)
{
u16 cmdflags = 0;
switch (cmd->rsp_type)
{
case SDMMC_RSP_TYPE_0:
break;
case SDMMC_RSP_TYPE_1:
case SDMMC_RSP_TYPE_4:
case SDMMC_RSP_TYPE_5:
if (cmd->check_busy)
cmdflags = SDHCI_CMD_RESP_LEN48_BUSY | SDHCI_CMD_INDEX | SDHCI_CMD_CRC;
else
cmdflags = SDHCI_CMD_RESP_LEN48 | SDHCI_CMD_INDEX | SDHCI_CMD_CRC;
break;
case SDMMC_RSP_TYPE_2:
cmdflags = SDHCI_CMD_RESP_LEN136 | SDHCI_CMD_CRC;
break;
case SDMMC_RSP_TYPE_3:
cmdflags = SDHCI_CMD_RESP_LEN48;
break;
default:
return 0;
}
if (is_data_present)
cmdflags |= SDHCI_CMD_DATA;
sdmmc->regs->argument = cmd->arg;
sdmmc->regs->cmdreg = SDHCI_CMD_IDX(cmd->cmd) | cmdflags;
return 1;
}
static void _sdmmc_send_tuning_cmd(sdmmc_t *sdmmc, u32 cmd)
{
sdmmc_cmd_t cmdbuf;
cmdbuf.cmd = cmd;
cmdbuf.arg = 0;
cmdbuf.rsp_type = SDMMC_RSP_TYPE_1;
cmdbuf.check_busy = 0;
_sdmmc_send_cmd(sdmmc, &cmdbuf, true);
}
static int _sdmmc_tuning_execute_once(sdmmc_t *sdmmc, u32 cmd, u32 tap)
{
if (!_sdmmc_wait_cmd_data_inhibit(sdmmc, true))
return 0;
_sdmmc_setup_read_small_block(sdmmc);
sdmmc->regs->norintstsen |= SDHCI_INT_DATA_AVAIL;
sdmmc->regs->norintsts = sdmmc->regs->norintsts;
sdmmc->regs->clkcon &= ~SDHCI_CLOCK_CARD_EN;
#ifdef BDK_SDMMC_UHS_DDR200_SUPPORT
// Set tap if manual tuning.
if (tap != HW_TAP_TUNING)
{
sdmmc->regs->ventunctl0 &= ~SDHCI_TEGRA_TUNING_TAP_HW_UPDATED;
sdmmc->regs->venclkctl = (sdmmc->regs->venclkctl & 0xFF00FFFF) | (tap << 16);
sdmmc->regs->ventunctl0 |= SDHCI_TEGRA_TUNING_TAP_HW_UPDATED;
}
#endif
_sdmmc_send_tuning_cmd(sdmmc, cmd);
_sdmmc_commit_changes(sdmmc);
usleep(1);
_sdmmc_reset_cmd_data(sdmmc);
sdmmc->regs->clkcon |= SDHCI_CLOCK_CARD_EN;
_sdmmc_commit_changes(sdmmc);
u32 timeout = get_tmr_us() + 5000;
while (get_tmr_us() < timeout)
{
if (sdmmc->regs->norintsts & SDHCI_INT_DATA_AVAIL)
{
sdmmc->regs->norintsts = SDHCI_INT_DATA_AVAIL;
sdmmc->regs->norintstsen &= ~SDHCI_INT_DATA_AVAIL;
_sdmmc_commit_changes(sdmmc);
usleep((8 * 1000 + sdmmc->card_clock - 1) / sdmmc->card_clock); // Wait 8 cycles.
return 1;
}
}
_sdmmc_reset_cmd_data(sdmmc);
sdmmc->regs->norintstsen &= ~SDHCI_INT_DATA_AVAIL;
_sdmmc_commit_changes(sdmmc);
usleep((8 * 1000 + sdmmc->card_clock - 1) / sdmmc->card_clock); // Wait 8 cycles.
return 0;
}
#ifdef BDK_SDMMC_UHS_DDR200_SUPPORT
typedef struct _sdmmc_manual_tuning_t
{
u32 result[8];
u32 num_iter;
u32 tap_start;
u32 tap_end;
} sdmmc_manual_tuning_t;
static int _sdmmc_manual_tuning_set_tap(sdmmc_t *sdmmc, sdmmc_manual_tuning_t *tuning)
{
u32 tap_start = INVALID_TAP;
u32 win_size = 0;
u32 best_tap = 0;
u32 best_size = 0;
for (u32 i = 0; i < tuning->num_iter; i++)
{
u32 iter_end = i == (tuning->num_iter - 1) ? 1 : 0;
u32 stable = tuning->result[i / 32] & BIT(i % 32);
if (stable && !iter_end)
{
if (tap_start == INVALID_TAP)
tap_start = i;
win_size++;
}
else
{
if (tap_start != INVALID_TAP)
{
u32 tap_end = !iter_end ? (i - 1) : i;
// Check if window is wider.
if (win_size > best_size)
{
best_tap = (tap_start + tap_end) / 2;
best_size = win_size + iter_end;
}
tap_start = INVALID_TAP;
win_size = 0;
}
}
}
// Check if failed.
if (!best_tap)
return 0;
sdmmc->regs->clkcon &= ~SDHCI_CLOCK_CARD_EN;
sdmmc->regs->ventunctl0 &= ~SDHCI_TEGRA_TUNING_TAP_HW_UPDATED;
// Set tap.
sdmmc->regs->venclkctl = (sdmmc->regs->venclkctl & 0xFF00FFFF) | (best_tap << 16);
sdmmc->regs->ventunctl0 |= SDHCI_TEGRA_TUNING_TAP_HW_UPDATED;
sdmmc->regs->clkcon |= SDHCI_CLOCK_CARD_EN;
return 1;
}
/*
* SD Card DDR200 (DDR208) support
*
* On Tegra X1, that can be done with DDR50 host mode.
* Tuning though can't be done automatically on any DDR mode.
* So it needs to be done manually and selected tap will be applied from the biggest
* sampling window.
*/
static int sdmmc_tuning_execute_ddr200(sdmmc_t *sdmmc)
{
sdmmc_manual_tuning_t manual_tuning = { 0 };
manual_tuning.num_iter = 128;
sdmmc->regs->ventunctl1 = 0; // step_size 1.
sdmmc->regs->ventunctl0 = (sdmmc->regs->ventunctl0 & 0xFFFF1FFF) | (2 << 13); // 128 Tries.
sdmmc->regs->ventunctl0 = (sdmmc->regs->ventunctl0 & 0xFFFFE03F) | (1 << 6); // 1x Multiplier.
sdmmc->regs->ventunctl0 |= SDHCI_TEGRA_TUNING_TAP_HW_UPDATED;
sdmmc->regs->hostctl2 |= SDHCI_CTRL_EXEC_TUNING;
for (u32 i = 0; i < manual_tuning.num_iter; i++)
{
_sdmmc_tuning_execute_once(sdmmc, MMC_SEND_TUNING_BLOCK, i);
// Save result for manual tuning.
int sampled = (sdmmc->regs->hostctl2 >> SDHCI_CTRL_TUNED_CLK_SHIFT) & 1;
manual_tuning.result[i / 32] |= sampled << (i % 32);
if (!(sdmmc->regs->hostctl2 & SDHCI_CTRL_EXEC_TUNING))
break;
}
return _sdmmc_manual_tuning_set_tap(sdmmc, &manual_tuning);
}
#endif
int sdmmc_tuning_execute(sdmmc_t *sdmmc, u32 type, u32 cmd)
{
u32 num_iter, flag;
if (sdmmc->powersave_enabled)
return 0;
switch (type)
{
case SDHCI_TIMING_MMC_HS200:
case SDHCI_TIMING_UHS_SDR104:
case SDHCI_TIMING_UHS_SDR82:
num_iter = 128;
flag = (2 << 13); // 128 iterations.
break;
case SDHCI_TIMING_UHS_SDR50:
case SDHCI_TIMING_UHS_DDR50: // HW tuning is not supported on DDR modes. But it sets tap to 0 which is proper.
case SDHCI_TIMING_MMC_HS100:
num_iter = 256;
flag = (4 << 13); // 256 iterations.
break;
case SDHCI_TIMING_MMC_HS400:
case SDHCI_TIMING_UHS_SDR12:
case SDHCI_TIMING_UHS_SDR25:
return 1;
#ifdef BDK_SDMMC_UHS_DDR200_SUPPORT
case SDHCI_TIMING_UHS_DDR200:
return sdmmc_tuning_execute_ddr200(sdmmc);
#endif
default:
return 0;
}
sdmmc->regs->ventunctl1 = 0; // step_size 1.
sdmmc->regs->ventunctl0 = (sdmmc->regs->ventunctl0 & 0xFFFF1FFF) | flag; // Tries.
sdmmc->regs->ventunctl0 = (sdmmc->regs->ventunctl0 & 0xFFFFE03F) | (1 << 6); // 1x Multiplier.
sdmmc->regs->ventunctl0 |= SDHCI_TEGRA_TUNING_TAP_HW_UPDATED;
sdmmc->regs->hostctl2 |= SDHCI_CTRL_EXEC_TUNING;
for (u32 i = 0; i < num_iter; i++)
{
_sdmmc_tuning_execute_once(sdmmc, cmd, HW_TAP_TUNING);
if (!(sdmmc->regs->hostctl2 & SDHCI_CTRL_EXEC_TUNING))
break;
}
if (sdmmc->regs->hostctl2 & SDHCI_CTRL_TUNED_CLK)
return 1;
return 0;
}
static int _sdmmc_enable_internal_clock(sdmmc_t *sdmmc)
{
//Enable internal clock and wait till it is stable.
sdmmc->regs->clkcon |= SDHCI_CLOCK_INT_EN;
_sdmmc_commit_changes(sdmmc);
u32 timeout = get_tmr_ms() + 2000;
while (!(sdmmc->regs->clkcon & SDHCI_CLOCK_INT_STABLE))
{
if (get_tmr_ms() > timeout)
return 0;
}
sdmmc->regs->hostctl2 &= ~SDHCI_CTRL_PRESET_VAL_EN;
sdmmc->regs->clkcon &= ~SDHCI_PROG_CLOCK_MODE;
// Enable 32bit addressing if used (sysad. if blkcnt it fallbacks to 16bit).
sdmmc->regs->hostctl2 |= SDHCI_HOST_VERSION_4_EN;
if (!(sdmmc->regs->capareg & SDHCI_CAP_64BIT))
return 0;
sdmmc->regs->hostctl2 |= SDHCI_ADDRESSING_64BIT_EN;
sdmmc->regs->hostctl &= ~SDHCI_CTRL_DMA_MASK;
sdmmc->regs->timeoutcon = (sdmmc->regs->timeoutcon & 0xF0) | 14; // TMCLK * 2^27.
return 1;
}
static int _sdmmc_autocal_config_offset(sdmmc_t *sdmmc, u32 power)
{
u32 off_pd = 0;
u32 off_pu = 0;
switch (sdmmc->id)
{
case SDMMC_2:
case SDMMC_4:
if (power != SDMMC_POWER_1_8)
return 0;
off_pd = 5;
off_pu = 5;
break;
case SDMMC_1:
if (power == SDMMC_POWER_1_8)
{
if (!sdmmc->t210b01)
{
off_pd = 0x7B; // -5.
off_pu = 0x7B; // -5.
}
else
{
off_pd = 6;
off_pu = 6;
}
}
else if (power == SDMMC_POWER_3_3)
{
if (!sdmmc->t210b01)
{
off_pd = 0x7D; // -3.
off_pu = 0;
}
}
else
return 0;
break;
}
sdmmc->regs->autocalcfg = (sdmmc->regs->autocalcfg & 0xFFFF8080) | (off_pd << 8) | off_pu;
return 1;
}
static void _sdmmc_enable_interrupts(sdmmc_t *sdmmc)
{
sdmmc->regs->norintstsen |= SDHCI_INT_DMA_END | SDHCI_INT_DATA_END | SDHCI_INT_RESPONSE;
sdmmc->regs->errintstsen |= SDHCI_ERR_INT_ALL_EXCEPT_ADMA_BUSPWR;
sdmmc->regs->norintsts = sdmmc->regs->norintsts;
sdmmc->regs->errintsts = sdmmc->regs->errintsts;
}
static void _sdmmc_mask_interrupts(sdmmc_t *sdmmc)
{
sdmmc->regs->errintstsen &= ~SDHCI_ERR_INT_ALL_EXCEPT_ADMA_BUSPWR;
sdmmc->regs->norintstsen &= ~(SDHCI_INT_DMA_END | SDHCI_INT_DATA_END | SDHCI_INT_RESPONSE);
}
static u32 _sdmmc_check_mask_interrupt(sdmmc_t *sdmmc, u16 *pout, u16 mask)
{
u16 norintsts = sdmmc->regs->norintsts;
u16 errintsts = sdmmc->regs->errintsts;
DPRINTF("norintsts %08X, errintsts %08X\n", norintsts, errintsts);
if (pout)
*pout = norintsts;
// Check for error interrupt.
if (norintsts & SDHCI_INT_ERROR)
{
#ifdef ERROR_EXTRA_PRINTING
EPRINTFARGS("SDMMC%d: norintsts %08X, errintsts %08X\n", sdmmc->id + 1, norintsts, errintsts);
#endif
sdmmc->regs->errintsts = errintsts;
return SDMMC_MASKINT_ERROR;
}
else if (norintsts & mask)
{
sdmmc->regs->norintsts = norintsts & mask;
return SDMMC_MASKINT_MASKED;
}
return SDMMC_MASKINT_NOERROR;
}
static int _sdmmc_wait_response(sdmmc_t *sdmmc)
{
_sdmmc_commit_changes(sdmmc);
u32 timeout = get_tmr_ms() + 2000;
while (true)
{
u32 result = _sdmmc_check_mask_interrupt(sdmmc, NULL, SDHCI_INT_RESPONSE);
if (result == SDMMC_MASKINT_MASKED)
break;
if (result != SDMMC_MASKINT_NOERROR || get_tmr_ms() > timeout)
{
_sdmmc_reset_cmd_data(sdmmc);
return 0;
}
}
return 1;
}
static int _sdmmc_stop_transmission_inner(sdmmc_t *sdmmc, u32 *rsp)
{
sdmmc_cmd_t cmd;
if (!_sdmmc_wait_cmd_data_inhibit(sdmmc, false))
return 0;
_sdmmc_enable_interrupts(sdmmc);
cmd.cmd = MMC_STOP_TRANSMISSION;
cmd.arg = 0;
cmd.rsp_type = SDMMC_RSP_TYPE_1;
cmd.check_busy = 1;
_sdmmc_send_cmd(sdmmc, &cmd, false);
int result = _sdmmc_wait_response(sdmmc);
_sdmmc_mask_interrupts(sdmmc);
if (!result)
return 0;
_sdmmc_cache_rsp(sdmmc, rsp, 4, SDMMC_RSP_TYPE_1);
return _sdmmc_wait_card_busy(sdmmc);
}
int sdmmc_stop_transmission(sdmmc_t *sdmmc, u32 *rsp)
{
if (!sdmmc->card_clock_enabled)
return 0;
// Recalibrate periodically for SDMMC1.
if (sdmmc->manual_cal && sdmmc->powersave_enabled)
_sdmmc_autocal_execute(sdmmc, sdmmc_get_io_power(sdmmc));
bool should_disable_sd_clock = false;
if (!(sdmmc->regs->clkcon & SDHCI_CLOCK_CARD_EN))
{
should_disable_sd_clock = true;
sdmmc->regs->clkcon |= SDHCI_CLOCK_CARD_EN;
_sdmmc_commit_changes(sdmmc);
usleep((8 * 1000 + sdmmc->card_clock - 1) / sdmmc->card_clock); // Wait 8 cycles.
}
int result = _sdmmc_stop_transmission_inner(sdmmc, rsp);
usleep((8 * 1000 + sdmmc->card_clock - 1) / sdmmc->card_clock); // Wait 8 cycles.
if (should_disable_sd_clock)
sdmmc->regs->clkcon &= ~SDHCI_CLOCK_CARD_EN;
return result;
}
static int _sdmmc_config_dma(sdmmc_t *sdmmc, u32 *blkcnt_out, sdmmc_req_t *req)
{
if (!req->blksize || !req->num_sectors)
return 0;
u32 blkcnt = req->num_sectors;
if (blkcnt >= 0xFFFF)
blkcnt = 0xFFFF;
u32 admaaddr = (u32)req->buf;
// Check alignment.
if (admaaddr & 7)
return 0;
sdmmc->regs->admaaddr = admaaddr;
sdmmc->regs->admaaddr_hi = 0;
sdmmc->dma_addr_next = (admaaddr + 0x80000) & 0xFFF80000;
sdmmc->regs->blksize = req->blksize | 0x7000; // DMA 512KB (Detects A18 carry out).
sdmmc->regs->blkcnt = blkcnt;
if (blkcnt_out)
*blkcnt_out = blkcnt;
u32 trnmode = SDHCI_TRNS_DMA | SDHCI_TRNS_RTYPE_R1;
// Set multiblock request.
if (req->is_multi_block)
trnmode |= SDHCI_TRNS_MULTI | SDHCI_TRNS_BLK_CNT_EN;
// Set request direction.
if (!req->is_write)
trnmode |= SDHCI_TRNS_READ;
// Automatic send of stop transmission or set block count cmd.
if (req->is_auto_stop_trn)
trnmode |= SDHCI_TRNS_AUTO_CMD12;
//else if (req->is_auto_set_blkcnt)
// trnmode |= SDHCI_TRNS_AUTO_CMD23;
sdmmc->regs->trnmod = trnmode;
return 1;
}
static int _sdmmc_update_dma(sdmmc_t *sdmmc)
{
u16 blkcnt = 0;
do
{
blkcnt = sdmmc->regs->blkcnt;
u32 timeout = get_tmr_ms() + 1500;
do
{
u32 result = SDMMC_MASKINT_MASKED;
while (true)
{
u16 intr = 0;
result = _sdmmc_check_mask_interrupt(sdmmc, &intr,
SDHCI_INT_DATA_END | SDHCI_INT_DMA_END);
if (result != SDMMC_MASKINT_MASKED)
break;
if (intr & SDHCI_INT_DATA_END)
return 1; // Transfer complete.
if (intr & SDHCI_INT_DMA_END)
{
// Update DMA.
sdmmc->regs->admaaddr = sdmmc->dma_addr_next;
sdmmc->regs->admaaddr_hi = 0;
sdmmc->dma_addr_next += 0x80000;
}
}
if (result != SDMMC_MASKINT_NOERROR)
{
#ifdef ERROR_EXTRA_PRINTING
EPRINTFARGS("SDMMC%d: int error!", sdmmc->id + 1);
#endif
_sdmmc_reset_cmd_data(sdmmc);
return 0;
}
} while (get_tmr_ms() < timeout);
} while (sdmmc->regs->blkcnt != blkcnt);
_sdmmc_reset_cmd_data(sdmmc);
return 0;
}
static int _sdmmc_execute_cmd_inner(sdmmc_t *sdmmc, sdmmc_cmd_t *cmd, sdmmc_req_t *req, u32 *blkcnt_out)
{
int has_req_or_check_busy = req || cmd->check_busy;
if (!_sdmmc_wait_cmd_data_inhibit(sdmmc, has_req_or_check_busy))
return 0;
u32 blkcnt = 0;
bool is_data_present = false;
if (req)
{
if (!_sdmmc_config_dma(sdmmc, &blkcnt, req))
{
#ifdef ERROR_EXTRA_PRINTING
EPRINTFARGS("SDMMC%d: DMA Wrong cfg!", sdmmc->id + 1);
#endif
return 0;
}
// Flush cache before starting the transfer.
bpmp_mmu_maintenance(BPMP_MMU_MAINT_CLEAN_WAY, false);
is_data_present = true;
}
_sdmmc_enable_interrupts(sdmmc);
if (!_sdmmc_send_cmd(sdmmc, cmd, is_data_present))
{
#ifdef ERROR_EXTRA_PRINTING
EPRINTFARGS("SDMMC%d: Wrong Response type %08X!", sdmmc->id + 1, cmd->rsp_type);
#endif
return 0;
}
int result = _sdmmc_wait_response(sdmmc);
#ifdef ERROR_EXTRA_PRINTING
if (!result)
EPRINTFARGS("SDMMC%d: Transfer timeout!", sdmmc->id + 1);
#endif
DPRINTF("rsp(%d): %08X, %08X, %08X, %08X\n", result,
sdmmc->regs->rspreg0, sdmmc->regs->rspreg1, sdmmc->regs->rspreg2, sdmmc->regs->rspreg3);
if (result)
{
if (cmd->rsp_type)
{
sdmmc->expected_rsp_type = cmd->rsp_type;
result = _sdmmc_cache_rsp(sdmmc, sdmmc->rsp, 0x10, cmd->rsp_type);
#ifdef ERROR_EXTRA_PRINTING
if (!result)
EPRINTFARGS("SDMMC%d: Unknown response type!", sdmmc->id + 1);
#endif
}
if (req && result)
{
result = _sdmmc_update_dma(sdmmc);
#ifdef ERROR_EXTRA_PRINTING
if (!result)
EPRINTFARGS("SDMMC%d: DMA Update failed!", sdmmc->id + 1);
#endif
}
}
_sdmmc_mask_interrupts(sdmmc);
if (result)
{
if (req)
{
// Invalidate cache after transfer.
bpmp_mmu_maintenance(BPMP_MMU_MAINT_INVALID_WAY, false);
if (blkcnt_out)
*blkcnt_out = blkcnt;
if (req->is_auto_stop_trn)
sdmmc->rsp3 = sdmmc->regs->rspreg3;
}
if (cmd->check_busy || req)
{
result = _sdmmc_wait_card_busy(sdmmc);
#ifdef ERROR_EXTRA_PRINTING
if (!result)
EPRINTFARGS("SDMMC%d: Busy timeout!", sdmmc->id + 1);
#endif
return result;
}
}
return result;
}
bool sdmmc_get_sd_inserted()
{
return (!gpio_read(GPIO_PORT_Z, GPIO_PIN_1));
}
static void _sdmmc_config_sdmmc1_schmitt()
{
PINMUX_AUX(PINMUX_AUX_SDMMC1_CLK) |= PINMUX_SCHMT;
PINMUX_AUX(PINMUX_AUX_SDMMC1_CMD) |= PINMUX_SCHMT;
PINMUX_AUX(PINMUX_AUX_SDMMC1_DAT3) |= PINMUX_SCHMT;
PINMUX_AUX(PINMUX_AUX_SDMMC1_DAT2) |= PINMUX_SCHMT;
PINMUX_AUX(PINMUX_AUX_SDMMC1_DAT1) |= PINMUX_SCHMT;
PINMUX_AUX(PINMUX_AUX_SDMMC1_DAT0) |= PINMUX_SCHMT;
}
static void _sdmmc_config_sdmmc2_schmitt()
{
PINMUX_AUX(PINMUX_AUX_SDMMC2_CLK) |= PINMUX_SCHMT;
PINMUX_AUX(PINMUX_AUX_SDMMC2_CMD) |= PINMUX_SCHMT;
PINMUX_AUX(PINMUX_AUX_SDMMC2_DAT7) |= PINMUX_SCHMT;
PINMUX_AUX(PINMUX_AUX_SDMMC2_DAT6) |= PINMUX_SCHMT;
PINMUX_AUX(PINMUX_AUX_SDMMC2_DAT5) |= PINMUX_SCHMT;
PINMUX_AUX(PINMUX_AUX_SDMMC2_DAT4) |= PINMUX_SCHMT;
PINMUX_AUX(PINMUX_AUX_SDMMC2_DAT3) |= PINMUX_SCHMT;
PINMUX_AUX(PINMUX_AUX_SDMMC2_DAT2) |= PINMUX_SCHMT;
PINMUX_AUX(PINMUX_AUX_SDMMC2_DAT1) |= PINMUX_SCHMT;
PINMUX_AUX(PINMUX_AUX_SDMMC2_DAT0) |= PINMUX_SCHMT;
}
static void _sdmmc_config_sdmmc1_pads(bool discharge)
{
u32 sdmmc1_pin_mask = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5;
// Set values for Reset state.
u32 function = GPIO_MODE_SPIO;
u32 level = GPIO_LOW;
u32 output = GPIO_OUTPUT_DISABLE;
// Set values for dicharging.
if (discharge)
{
function = GPIO_MODE_GPIO;
level = GPIO_HIGH;
output = GPIO_OUTPUT_ENABLE;
}
// Set all pads function.
gpio_config(GPIO_PORT_M, sdmmc1_pin_mask, function);
// Set all pads output level.
gpio_write(GPIO_PORT_M, sdmmc1_pin_mask, level);
// Set all pads output.
gpio_output_enable(GPIO_PORT_M, sdmmc1_pin_mask, output);
}
static int _sdmmc_config_sdmmc1(bool t210b01)
{
// Configure SD card detect.
PINMUX_AUX(PINMUX_AUX_GPIO_PZ1) = PINMUX_INPUT_ENABLE | PINMUX_PULL_UP | 2; // GPIO control, pull up.
APB_MISC(APB_MISC_GP_VGPIO_GPIO_MUX_SEL) = 0;
gpio_direction_input(GPIO_PORT_Z, GPIO_PIN_1);
usleep(100);
// Check if SD card is inserted.
if (!sdmmc_get_sd_inserted())
return 0;
/*
* Pinmux config:
* DRV_TYPE = DRIVE_2X (for 33 Ohm driver)
* E_SCHMT = ENABLE (for 1.8V), DISABLE (for 3.3V)
* E_INPUT = ENABLE
* TRISTATE = PASSTHROUGH
* APB_MISC_GP_SDMMCx_CLK_LPBK_CONTROL = SDMMCx_CLK_PAD_E_LPBK for CLK
*/
// Enable deep loopback for SDMMC1 CLK pad.
APB_MISC(APB_MISC_GP_SDMMC1_CLK_LPBK_CONTROL) = 1;
// Configure SDMMC1 CLK pinmux, based on state and SoC type.
PINMUX_AUX(PINMUX_AUX_SDMMC1_CLK) &= ~PINMUX_SCHMT;
if (PINMUX_AUX(PINMUX_AUX_SDMMC1_CLK) != (PINMUX_DRIVE_2X | PINMUX_INPUT_ENABLE | PINMUX_PULL_DOWN)) // Check if CLK pad is already configured.
PINMUX_AUX(PINMUX_AUX_SDMMC1_CLK) = PINMUX_DRIVE_2X | PINMUX_INPUT_ENABLE | (t210b01 ? PINMUX_PULL_NONE : PINMUX_PULL_DOWN);
// Configure reset state of SDMMC1 pins pinmux.
PINMUX_AUX(PINMUX_AUX_SDMMC1_CMD) = PINMUX_DRIVE_2X | PINMUX_INPUT_ENABLE | PINMUX_PULL_UP;
PINMUX_AUX(PINMUX_AUX_SDMMC1_DAT3) = PINMUX_DRIVE_2X | PINMUX_INPUT_ENABLE | PINMUX_PULL_UP;
PINMUX_AUX(PINMUX_AUX_SDMMC1_DAT2) = PINMUX_DRIVE_2X | PINMUX_INPUT_ENABLE | PINMUX_PULL_UP;
PINMUX_AUX(PINMUX_AUX_SDMMC1_DAT1) = PINMUX_DRIVE_2X | PINMUX_INPUT_ENABLE | PINMUX_PULL_UP;
PINMUX_AUX(PINMUX_AUX_SDMMC1_DAT0) = PINMUX_DRIVE_2X | PINMUX_INPUT_ENABLE | PINMUX_PULL_UP;
// Force schmitt trigger for T210B01.
if (t210b01)
_sdmmc_config_sdmmc1_schmitt();
// Make sure the SDMMC1 controller is powered.
PMC(APBDEV_PMC_NO_IOPOWER) |= PMC_NO_IOPOWER_SDMMC1_IO_EN;
usleep(1000);
PMC(APBDEV_PMC_NO_IOPOWER) &= ~(PMC_NO_IOPOWER_SDMMC1_IO_EN);
(void)PMC(APBDEV_PMC_NO_IOPOWER); // Commit write.
// Set enable SD card power.
PINMUX_AUX(PINMUX_AUX_DMIC3_CLK) = PINMUX_PULL_DOWN | 2;
gpio_direction_output(GPIO_PORT_E, GPIO_PIN_4, GPIO_HIGH);
usleep(10000);
// Inform IO pads that voltage is gonna be 3.3V.
PMC(APBDEV_PMC_PWR_DET_VAL) |= PMC_PWR_DET_SDMMC1_IO_EN;
(void)PMC(APBDEV_PMC_PWR_DET_VAL); // Commit write.
// Enable SD card IO power.
max7762x_regulator_set_voltage(REGULATOR_LDO2, 3300000);
max7762x_regulator_enable(REGULATOR_LDO2, true);
usleep(1000);
// Set pad slew codes to get good quality clock.
if (!t210b01)
{
APB_MISC(APB_MISC_GP_SDMMC1_PAD_CFGPADCTRL) = (APB_MISC(APB_MISC_GP_SDMMC1_PAD_CFGPADCTRL) & 0xFFFFFFF) | 0x50000000;
(void)APB_MISC(APB_MISC_GP_SDMMC1_PAD_CFGPADCTRL); // Commit write.
usleep(1000);
}
return 1;
}
static void _sdmmc_config_emmc(u32 id, bool t210b01)
{
switch (id)
{
case SDMMC_2:
if (!t210b01)
{
// Unset park for pads.
APB_MISC(APB_MISC_GP_EMMC2_PAD_CFGPADCTRL) &= 0xF8003FFF;
(void)APB_MISC(APB_MISC_GP_EMMC2_PAD_CFGPADCTRL); // Commit write.
}
else // Enable schmitt trigger for T210B01.
_sdmmc_config_sdmmc2_schmitt();
break;
case SDMMC_4:
// Unset park for pads.
APB_MISC(APB_MISC_GP_EMMC4_PAD_CFGPADCTRL) &= 0xF8003FFF;
// Set default pad cfg.
if (t210b01)
APB_MISC(APB_MISC_GP_EMMC4_PAD_PUPD_CFGPADCTRL) &= 0xFFBFFFF9; // Unset CMD/CLK/DQS weak pull up/down.
// Enable schmitt trigger.
APB_MISC(APB_MISC_GP_EMMC4_PAD_CFGPADCTRL) |= 1;
(void)APB_MISC(APB_MISC_GP_EMMC4_PAD_CFGPADCTRL); // Commit write.
break;
}
}
int sdmmc_init(sdmmc_t *sdmmc, u32 id, u32 power, u32 bus_width, u32 type)
{
u32 clock;
u16 divisor;
u8 vref_sel = 7;
const u8 trim_values_t210[4] = { 2, 8, 3, 8 };
const u8 trim_values_t210b01[4] = { 14, 13, 15, 13 };
const u8 *trim_values;
if (id > SDMMC_4 || id == SDMMC_3)
return 0;
memset(sdmmc, 0, sizeof(sdmmc_t));
sdmmc->regs = (t210_sdmmc_t *)_sdmmc_bases[id];
sdmmc->id = id;
sdmmc->clock_stopped = 1;
sdmmc->t210b01 = hw_get_chip_id() == GP_HIDREV_MAJOR_T210B01;
trim_values = sdmmc->t210b01 ? trim_values_t210b01 : trim_values_t210;
// Do specific SDMMC HW configuration.
switch (id)
{
case SDMMC_1:
if (!_sdmmc_config_sdmmc1(sdmmc->t210b01))
return 0;
if (sdmmc->t210b01)
vref_sel = 0;
else
sdmmc->manual_cal = 1;
break;
case SDMMC_2:
case SDMMC_4:
_sdmmc_config_emmc(id, sdmmc->t210b01);
break;
}
// Disable clock if enabled.
if (clock_sdmmc_is_not_reset_and_enabled(id))
{
_sdmmc_sd_clock_disable(sdmmc);
_sdmmc_commit_changes(sdmmc);
}
// Configure and enable selected clock.
clock_sdmmc_get_card_clock_div(&clock, &divisor, type);
clock_sdmmc_enable(id, clock);
// Make sure all sdmmc registers are reset.
_sdmmc_reset_all(sdmmc);
sdmmc->clock_stopped = 0;
// Set default pad IO trimming configuration.
sdmmc->regs->iospare |= BIT(19); // Enable 1 cycle delayed cmd_oen.
sdmmc->regs->veniotrimctl &= ~BIT(2); // Set Band Gap VREG to supply DLL.
sdmmc->regs->venclkctl = (sdmmc->regs->venclkctl & 0xE0FFFFFB) | ((u32)trim_values[sdmmc->id] << 24);
sdmmc->regs->sdmemcmppadctl = (sdmmc->regs->sdmemcmppadctl & ~SDHCI_TEGRA_PADCTRL_VREF_SEL_MASK) | vref_sel;
// Configure auto calibration values.
if (!_sdmmc_autocal_config_offset(sdmmc, power))
return 0;
// Calibrate pads.
_sdmmc_autocal_execute(sdmmc, power);
// Enable internal clock and power.
if (_sdmmc_enable_internal_clock(sdmmc))
{
sdmmc_set_bus_width(sdmmc, bus_width);
_sdmmc_set_io_power(sdmmc, power);
if (sdmmc_setup_clock(sdmmc, type))
{
sdmmc_card_clock_powersave(sdmmc, SDMMC_POWER_SAVE_DISABLE);
_sdmmc_card_clock_enable(sdmmc);
_sdmmc_commit_changes(sdmmc);
return 1;
}
}
return 0;
}
void sdmmc1_disable_power()
{
// T210B01 WAR: Clear pull down from CLK pad.
PINMUX_AUX(PINMUX_AUX_SDMMC1_CLK) &= ~PINMUX_PULL_MASK;
// T210B01 WAR: Set pads to discharge state.
_sdmmc_config_sdmmc1_pads(true);
// Disable SD card IO power regulator.
max7762x_regulator_enable(REGULATOR_LDO2, false);
usleep(4000);
// Disable SD card IO power pin.
gpio_write(GPIO_PORT_E, GPIO_PIN_4, GPIO_LOW);
// T210/T210B01 WAR: Set start timer for IO and Controller power discharge.
sd_power_cycle_time_start = get_tmr_ms();
usleep(1000); // To power cycle, min 1ms without power is needed.
// Disable SDMMC1 controller power.
PMC(APBDEV_PMC_NO_IOPOWER) |= PMC_NO_IOPOWER_SDMMC1_IO_EN;
(void)PMC(APBDEV_PMC_NO_IOPOWER); // Commit write.
// Inform IO pads that next voltage might be 3.3V.
PMC(APBDEV_PMC_PWR_DET_VAL) |= PMC_PWR_DET_SDMMC1_IO_EN;
(void)PMC(APBDEV_PMC_PWR_DET_VAL); // Commit write.
// T210B01 WAR: Restore pads to reset state.
_sdmmc_config_sdmmc1_pads(false);
// T210B01 WAR: Restore pull down to CLK pad.
PINMUX_AUX(PINMUX_AUX_SDMMC1_CLK) |= PINMUX_PULL_DOWN;
}
void sdmmc_end(sdmmc_t *sdmmc)
{
if (!sdmmc->clock_stopped)
{
_sdmmc_sd_clock_disable(sdmmc);
// Disable SDMMC power.
_sdmmc_set_io_power(sdmmc, SDMMC_POWER_OFF);
_sdmmc_commit_changes(sdmmc);
// Disable SD card power.
if (sdmmc->id == SDMMC_1)
sdmmc1_disable_power();
clock_sdmmc_disable(sdmmc->id);
sdmmc->clock_stopped = 1;
}
}
void sdmmc_init_cmd(sdmmc_cmd_t *cmdbuf, u16 cmd, u32 arg, u32 rsp_type, u32 check_busy)
{
cmdbuf->cmd = cmd;
cmdbuf->arg = arg;
cmdbuf->rsp_type = rsp_type;
cmdbuf->check_busy = check_busy;
}
int sdmmc_execute_cmd(sdmmc_t *sdmmc, sdmmc_cmd_t *cmd, sdmmc_req_t *req, u32 *blkcnt_out)
{
if (!sdmmc->card_clock_enabled)
return 0;
// Recalibrate periodically for SDMMC1.
if (sdmmc->manual_cal && sdmmc->powersave_enabled)
_sdmmc_autocal_execute(sdmmc, sdmmc_get_io_power(sdmmc));
int should_disable_sd_clock = 0;
if (!(sdmmc->regs->clkcon & SDHCI_CLOCK_CARD_EN))
{
should_disable_sd_clock = 1;
sdmmc->regs->clkcon |= SDHCI_CLOCK_CARD_EN;
_sdmmc_commit_changes(sdmmc);
usleep((8 * 1000 + sdmmc->card_clock - 1) / sdmmc->card_clock); // Wait 8 cycles.
}
int result = _sdmmc_execute_cmd_inner(sdmmc, cmd, req, blkcnt_out);
usleep((8 * 1000 + sdmmc->card_clock - 1) / sdmmc->card_clock); // Wait 8 cycles.
if (should_disable_sd_clock)
sdmmc->regs->clkcon &= ~SDHCI_CLOCK_CARD_EN;
return result;
}
int sdmmc_enable_low_voltage(sdmmc_t *sdmmc)
{
if (sdmmc->id != SDMMC_1)
return 0;
_sdmmc_commit_changes(sdmmc);
// Switch to 1.8V and wait for regulator to stabilize. Assume max possible wait needed.
max7762x_regulator_set_voltage(REGULATOR_LDO2, 1800000);
usleep(150);
// Inform IO pads that we switched to 1.8V.
PMC(APBDEV_PMC_PWR_DET_VAL) &= ~(PMC_PWR_DET_SDMMC1_IO_EN);
(void)PMC(APBDEV_PMC_PWR_DET_VAL); // Commit write.
// Enable schmitt trigger for better duty cycle and low jitter clock.
_sdmmc_config_sdmmc1_schmitt();
_sdmmc_autocal_config_offset(sdmmc, SDMMC_POWER_1_8);
_sdmmc_autocal_execute(sdmmc, SDMMC_POWER_1_8);
_sdmmc_set_io_power(sdmmc, SDMMC_POWER_1_8);
_sdmmc_commit_changes(sdmmc);
msleep(5); // Wait minimum 5ms before turning on the card clock.
// Turn on SDCLK.
if (sdmmc->regs->hostctl2 & SDHCI_CTRL_VDD_180)
{
sdmmc->regs->clkcon |= SDHCI_CLOCK_CARD_EN;
_sdmmc_commit_changes(sdmmc);
usleep(1000);
if ((sdmmc->regs->prnsts & SDHCI_DATA_LVL_MASK) == SDHCI_DATA_LVL_MASK)
return 1;
}
return 0;
}