hekate-emmc/ipl/hos.c
Ced2911 4d7f016e3a Feature/4x (#10)
* Dump sm, added JanV work
* add Ac_K patches, fix boot, keygen is wrong, need more work
* cleanup keygen, correct key for 4xx
* remove unused code, cleanup code
2018-05-13 13:13:17 +12:00

499 lines
14 KiB
C
Executable File

/*
* Copyright (c) 2018 naehrwert
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <string.h>
#include "hos.h"
#include "sdmmc.h"
#include "nx_emmc.h"
#include "t210.h"
#include "se.h"
#include "se_t210.h"
#include "pmc.h"
#include "cluster.h"
#include "heap.h"
#include "tsec.h"
#include "pkg2.h"
#include "nx_emmc.h"
#include "util.h"
#include "pkg1.h"
#include "pkg2.h"
#include "ff.h"
#include "gfx.h"
extern gfx_ctxt_t gfx_ctxt;
extern gfx_con_t gfx_con;
#define DPRINTF(...) gfx_printf(&gfx_con, __VA_ARGS__)
//#define DPRINTF(...)
enum KB_FIRMWARE_VERSION {
KB_FIRMWARE_VERSION_100_200 = 0,
KB_FIRMWARE_VERSION_300 = 1,
KB_FIRMWARE_VERSION_301 = 2,
KB_FIRMWARE_VERSION_400 = 3,
KB_FIRMWARE_VERSION_500 = 4,
KB_FIRMWARE_VERSION_MAX
};
#define NUM_KEYBLOB_KEYS 5
static const u8 keyblob_keyseeds[NUM_KEYBLOB_KEYS][0x10] = {
{ 0xDF, 0x20, 0x6F, 0x59, 0x44, 0x54, 0xEF, 0xDC, 0x70, 0x74, 0x48, 0x3B, 0x0D, 0xED, 0x9F, 0xD3 }, //1.0.0
{ 0x0C, 0x25, 0x61, 0x5D, 0x68, 0x4C, 0xEB, 0x42, 0x1C, 0x23, 0x79, 0xEA, 0x82, 0x25, 0x12, 0xAC }, //3.0.0
{ 0x33, 0x76, 0x85, 0xEE, 0x88, 0x4A, 0xAE, 0x0A, 0xC2, 0x8A, 0xFD, 0x7D, 0x63, 0xC0, 0x43, 0x3B }, //3.0.1
{ 0x2D, 0x1F, 0x48, 0x80, 0xED, 0xEC, 0xED, 0x3E, 0x3C, 0xF2, 0x48, 0xB5, 0x65, 0x7D, 0xF7, 0xBE }, //4.0.0
{ 0xBB, 0x5A, 0x01, 0xF9, 0x88, 0xAF, 0xF5, 0xFC, 0x6C, 0xFF, 0x07, 0x9E, 0x13, 0x3C, 0x39, 0x80 } //5.0.0
};
static const u8 cmac_keyseed[0x10] =
{ 0x59, 0xC7, 0xFB, 0x6F, 0xBE, 0x9B, 0xBE, 0x87, 0x65, 0x6B, 0x15, 0xC0, 0x53, 0x73, 0x36, 0xA5 };
static const u8 master_keyseed_retail[0x10] =
{ 0xD8, 0xA2, 0x41, 0x0A, 0xC6, 0xC5, 0x90, 0x01, 0xC6, 0x1D, 0x6A, 0x26, 0x7C, 0x51, 0x3F, 0x3C };
static const u8 console_keyseed[0x10] =
{ 0x4F, 0x02, 0x5F, 0x0E, 0xB6, 0x6D, 0x11, 0x0E, 0xDC, 0x32, 0x7D, 0x41, 0x86, 0xC2, 0xF4, 0x78 };
static const u8 key8_keyseed[] =
{ 0xFB, 0x8B, 0x6A, 0x9C, 0x79, 0x00, 0xC8, 0x49, 0xEF, 0xD2, 0x4D, 0x85, 0x4D, 0x30, 0xA0, 0xC7 };
static const u8 master_keyseed_4xx[0x10] =
{ 0x2D, 0xC1, 0xF4, 0x8D, 0xF3, 0x5B, 0x69, 0x33, 0x42, 0x10, 0xAC, 0x65, 0xDA, 0x90, 0x46, 0x66 };
static const u8 console_keyseed_4xx[0x10] =
{ 0x0C, 0x91, 0x09, 0xDB, 0x93, 0x93, 0x07, 0x81, 0x07, 0x3C, 0xC4, 0x16, 0x22, 0x7C, 0x6C, 0x28 };
static void _se_lock()
{
for (u32 i = 0; i < 16; i++)
se_key_acc_ctrl(i, 0x15);
for (u32 i = 0; i < 2; i++)
se_rsa_acc_ctrl(i, 1);
SE(0x4) = 0; //Make this reg secure only.
SE(SE_KEY_TABLE_ACCESS_LOCK_OFFSET) = 0; //Make all key access regs secure only.
SE(SE_RSA_KEYTABLE_ACCESS_LOCK_OFFSET) = 0; //Make all rsa access regs secure only.
SE(SE_SECURITY_0) &= 0xFFFFFFFB; //Make access lock regs secure only.
//This is useful for documenting the bits in the SE config registers, so we can keep it around.
/*gfx_printf(&gfx_con, "SE(SE_SECURITY_0) = %08X\n", SE(SE_SECURITY_0));
gfx_printf(&gfx_con, "SE(0x4) = %08X\n", SE(0x4));
gfx_printf(&gfx_con, "SE(SE_KEY_TABLE_ACCESS_LOCK_OFFSET) = %08X\n", SE(SE_KEY_TABLE_ACCESS_LOCK_OFFSET));
gfx_printf(&gfx_con, "SE(SE_RSA_KEYTABLE_ACCESS_LOCK_OFFSET) = %08X\n", SE(SE_RSA_KEYTABLE_ACCESS_LOCK_OFFSET));
for(u32 i = 0; i < 16; i++)
gfx_printf(&gfx_con, "%02X ", SE(SE_KEY_TABLE_ACCESS_REG_OFFSET + i * 4) & 0xFF);
gfx_putc(&gfx_con, '\n');
for(u32 i = 0; i < 2; i++)
gfx_printf(&gfx_con, "%02X ", SE(SE_RSA_KEYTABLE_ACCESS_REG_OFFSET + i * 4) & 0xFF);
gfx_putc(&gfx_con, '\n');
gfx_hexdump(&gfx_con, SE_BASE, (void *)SE_BASE, 0x400);*/
}
// <-- key derivation algorithm
int keygen(u8 *keyblob, u32 kb, void *tsec_fw)
{
u8 tmp[0x10];
se_key_acc_ctrl(0x0D, 0x15);
se_key_acc_ctrl(0x0E, 0x15);
//Get TSEC key.
if (tsec_query(tmp, 1, tsec_fw) < 0)
return 0;
se_aes_key_set(0x0D, tmp, 0x10);
//Derive keyblob keys from TSEC+SBK.
se_aes_crypt_block_ecb(0x0D, 0x00, tmp, keyblob_keyseeds[0]);
se_aes_unwrap_key(0x0F, 0x0E, tmp);
se_aes_crypt_block_ecb(0xD, 0x00, tmp, keyblob_keyseeds[kb]);
se_aes_unwrap_key(0x0D, 0x0E, tmp);
// Clear SBK
se_aes_key_clear(0x0E);
//TODO: verify keyblob CMAC.
//se_aes_unwrap_key(11, 13, cmac_keyseed);
//se_aes_cmac(tmp, 0x10, 11, keyblob + 0x10, 0xA0);
//if (!memcmp(keyblob, tmp, 0x10))
// return 0;
se_aes_crypt_block_ecb(0x0D, 0, tmp, cmac_keyseed);
se_aes_unwrap_key(0x0B, 0x0D, cmac_keyseed);
//Decrypt keyblob and set keyslots.
se_aes_crypt_ctr(0x0D, keyblob + 0x20, 0x90, keyblob + 0x20, 0x90, keyblob + 0x10);
se_aes_key_set(0x0B, keyblob + 0x20 + 0x80, 0x10); // package1 key
se_aes_key_set(0x0C, keyblob + 0x20, 0x10);
se_aes_key_set(0x0D, keyblob + 0x20, 0x10);
se_aes_crypt_block_ecb(0x0C, 0, tmp, master_keyseed_retail);
switch (kb) {
case KB_FIRMWARE_VERSION_100_200:
case KB_FIRMWARE_VERSION_300:
se_aes_unwrap_key(0x0D, 0x0F, console_keyseed);
se_aes_unwrap_key(0x0C, 0x0C, master_keyseed_retail);
break;
case KB_FIRMWARE_VERSION_400:
se_aes_unwrap_key(0x0D, 0x0F, console_keyseed_4xx);
se_aes_unwrap_key(0x0F, 0x0F, console_keyseed);
se_aes_unwrap_key(0x0E, 0x0C, master_keyseed_4xx);
se_aes_unwrap_key(0x0C, 0x0C, master_keyseed_retail);
break;
case KB_FIRMWARE_VERSION_500:
default:
se_aes_unwrap_key(0x0A, 0x0F, console_keyseed_4xx);
se_aes_unwrap_key(0x0F, 0x0F, console_keyseed);
se_aes_unwrap_key(0x0E, 0x0C, master_keyseed_4xx);
se_aes_unwrap_key(0x0C, 0x0C, master_keyseed_retail);
break;
}
// Package2 key
se_key_acc_ctrl(0x08, 0x15);
se_aes_unwrap_key(0x08, 0x0C, key8_keyseed);
}
typedef struct _launch_ctxt_t
{
void *keyblob;
void *pkg1;
const pkg1_id_t *pkg1_id;
void *warmboot;
u32 warmboot_size;
void *secmon;
u32 secmon_size;
void *pkg2;
u32 pkg2_size;
void *kernel;
u32 kernel_size;
link_t kip1_list;
} launch_ctxt_t;
typedef struct _merge_kip_t
{
void *kip1;
link_t link;
} merge_kip_t;
static int _read_emmc_pkg1(launch_ctxt_t *ctxt)
{
int res = 0;
sdmmc_storage_t storage;
sdmmc_t sdmmc;
sdmmc_storage_init_mmc(&storage, &sdmmc, SDMMC_4, SDMMC_BUS_WIDTH_8, 4);
//Read package1.
ctxt->pkg1 = (u8 *)malloc(0x40000);
sdmmc_storage_set_mmc_partition(&storage, 1);
sdmmc_storage_read(&storage, 0x100000 / NX_EMMC_BLOCKSIZE, 0x40000 / NX_EMMC_BLOCKSIZE, ctxt->pkg1);
ctxt->pkg1_id = pkg1_identify(ctxt->pkg1);
if (!ctxt->pkg1_id)
{
DPRINTF("%kCould not identify package 1 version (= '%s').%k\n", 0xFF0000FF, (char *)ctxt->pkg1 + 0x10, 0xFFFFFFFF);
goto out;
}
DPRINTF("Identified package1 ('%s'), keyblob version %d\n", (char *)(ctxt->pkg1 + 0x10), ctxt->pkg1_id->kb);
//Read the correct keyblob.
ctxt->keyblob = (u8 *)malloc(NX_EMMC_BLOCKSIZE);
sdmmc_storage_read(&storage, 0x180000 / NX_EMMC_BLOCKSIZE + ctxt->pkg1_id->kb, 1, ctxt->keyblob);
res = 1;
out:;
sdmmc_storage_end(&storage);
return res;
}
static int _read_emmc_pkg2(launch_ctxt_t *ctxt)
{
int res = 0;
sdmmc_storage_t storage;
sdmmc_t sdmmc;
sdmmc_storage_init_mmc(&storage, &sdmmc, SDMMC_4, SDMMC_BUS_WIDTH_8, 4);
sdmmc_storage_set_mmc_partition(&storage, 0);
//Parse eMMC GPT.
LIST_INIT(gpt);
nx_emmc_gpt_parse(&gpt, &storage);
DPRINTF("parsed GPT\n");
//Find package2 partition.
emmc_part_t *pkg2_part = nx_emmc_part_find(&gpt, "BCPKG2-1-Normal-Main");
if (!pkg2_part)
goto out;
//Read in package2 header and get package2 real size.
//TODO: implement memalign for DMA buffers.
u8 *tmp = (u8 *)malloc(NX_EMMC_BLOCKSIZE);
nx_emmc_part_read(&storage, pkg2_part, 0x4000 / NX_EMMC_BLOCKSIZE, 1, tmp);
u32 *hdr = (u32 *)(tmp + 0x100);
u32 pkg2_size = hdr[0] ^ hdr[2] ^ hdr[3];
free(tmp);
DPRINTF("pkg2 size on emmc is %08X\n", pkg2_size);
//Read in package2.
u32 pkg2_size_aligned = ALIGN(pkg2_size, NX_EMMC_BLOCKSIZE);
DPRINTF("pkg2 size aligned is %08X\n", pkg2_size_aligned);
ctxt->pkg2 = malloc(pkg2_size_aligned);
ctxt->pkg2_size = pkg2_size;
nx_emmc_part_read(&storage, pkg2_part, 0x4000 / NX_EMMC_BLOCKSIZE,
pkg2_size_aligned / NX_EMMC_BLOCKSIZE, ctxt->pkg2);
res = 1;
out:;
nx_emmc_gpt_free(&gpt);
sdmmc_storage_end(&storage);
return res;
}
static int _config_warmboot(launch_ctxt_t *ctxt, const char *value)
{
FIL fp;
if (f_open(&fp, value, FA_READ) != FR_OK)
return 0;
ctxt->warmboot_size = f_size(&fp);
ctxt->warmboot = malloc(ctxt->warmboot_size);
f_read(&fp, ctxt->warmboot, ctxt->warmboot_size, NULL);
f_close(&fp);
return 1;
}
static int _config_secmon(launch_ctxt_t *ctxt, const char *value)
{
FIL fp;
if (f_open(&fp, value, FA_READ) != FR_OK)
return 0;
ctxt->secmon_size = f_size(&fp);
ctxt->secmon = malloc(ctxt->secmon_size);
f_read(&fp, ctxt->secmon, ctxt->secmon_size, NULL);
f_close(&fp);
return 1;
}
static int _config_kernel(launch_ctxt_t *ctxt, const char *value)
{
FIL fp;
if (f_open(&fp, value, FA_READ) != FR_OK)
return 0;
ctxt->kernel_size = f_size(&fp);
ctxt->kernel = malloc(ctxt->kernel_size);
f_read(&fp, ctxt->kernel, ctxt->kernel_size, NULL);
f_close(&fp);
return 1;
}
static int _config_kip1(launch_ctxt_t *ctxt, const char *value)
{
FIL fp;
if (f_open(&fp, value, FA_READ) != FR_OK)
return 0;
merge_kip_t *mkip1 = (merge_kip_t *)malloc(sizeof(merge_kip_t));
mkip1->kip1 = malloc(f_size(&fp));
f_read(&fp, mkip1->kip1, f_size(&fp), NULL);
DPRINTF("loaded kip from SD (size %08X)\n", f_size(&fp));
f_close(&fp);
list_append(&ctxt->kip1_list, &mkip1->link);
return 1;
}
typedef struct _cfg_handler_t
{
const char *key;
int (*handler)(launch_ctxt_t *ctxt, const char *value);
} cfg_handler_t;
static const cfg_handler_t _config_handlers[] = {
{ "warmboot", _config_warmboot },
{ "secmon", _config_secmon },
{ "kernel", _config_kernel },
{ "kip1", _config_kip1 },
{ NULL, NULL },
};
static int _config(launch_ctxt_t *ctxt, ini_sec_t *cfg)
{
LIST_FOREACH_ENTRY(ini_kv_t, kv, &cfg->kvs, link)
for(u32 i = 0; _config_handlers[i].key; i++)
if (!strcmp(_config_handlers[i].key, kv->key) &&
!_config_handlers[i].handler(ctxt, kv->val))
return 0;
return 1;
}
int hos_launch(ini_sec_t *cfg)
{
launch_ctxt_t ctxt;
memset(&ctxt, 0, sizeof(launch_ctxt_t));
list_init(&ctxt.kip1_list);
if (cfg && !_config(&ctxt, cfg))
return 0;
//Read package1 and the correct keyblob.
if (!_read_emmc_pkg1(&ctxt))
return 0;
//XXX: remove this once we support 3+.
//if (ctxt.pkg1_id->kb > 0)
// return 0;
DPRINTF("loaded pkg1 and keyblob\n");
//Generate keys.
keygen(ctxt.keyblob, ctxt.pkg1_id->kb, (u8 *)ctxt.pkg1 + ctxt.pkg1_id->tsec_off);
DPRINTF("generated keys\n");
//Decrypt and unpack package1 if we require parts of it.
if (!ctxt.warmboot || !ctxt.secmon)
{
pkg1_decrypt(ctxt.pkg1_id, ctxt.pkg1);
pkg1_unpack((void *)0x8000D000, (void *)ctxt.pkg1_id->secmon_base, ctxt.pkg1_id, ctxt.pkg1);
//gfx_hexdump(&gfx_con, 0x8000D000, (void *)0x8000D000, 0x100);
//gfx_hexdump(&gfx_con, ctxt.pkg1_id->secmon_base, (void *)ctxt.pkg1_id->secmon_base, 0x100);
DPRINTF("decrypted and unpacked pkg1\n");
}
//Replace 'warmboot.bin' if requested.
if (ctxt.warmboot)
memcpy((void *)0x8000D000, ctxt.warmboot, ctxt.warmboot_size);
//Set warmboot address in PMC.
PMC(APBDEV_PMC_SCRATCH1) = 0x8000D000;
//Replace 'SecureMonitor' if requested.
if (ctxt.secmon) {
memcpy((void *)ctxt.pkg1_id->secmon_base, ctxt.secmon, ctxt.secmon_size);
}
else
{
//Else we patch it to allow for an unsigned package2.
patch_t *secmon_patchset = ctxt.pkg1_id->secmon_patchset;
if (secmon_patchset != NULL) {
for (u32 i = 0; secmon_patchset[i].off != 0xFFFFFFFF; i++)
*(vu32 *)(ctxt.pkg1_id->secmon_base + secmon_patchset[i].off) = secmon_patchset[i].val;
DPRINTF("loaded warmboot.bin and secmon\n");
//Read package2.
if (!_read_emmc_pkg2(&ctxt))
return 0;
DPRINTF("read pkg2\n");
//Decrypt package2 and parse KIP1 blobs in INI1 section.
pkg2_hdr_t *pkg2_hdr = pkg2_decrypt(ctxt.pkg2);
LIST_INIT(kip1_info);
pkg2_parse_kips(&kip1_info, pkg2_hdr);
DPRINTF("parsed ini1\n");
//Use the kernel included in package2 in case we didn't load one already.
if (!ctxt.kernel)
{
ctxt.kernel = pkg2_hdr->data;
ctxt.kernel_size = pkg2_hdr->sec_size[PKG2_SEC_KERNEL];
}
//Merge extra KIP1s into loaded ones.
LIST_FOREACH_ENTRY(merge_kip_t, mki, &ctxt.kip1_list, link)
pkg2_merge_kip(&kip1_info, (pkg2_kip1_t *)mki->kip1);
//Rebuild and encrypt package2.
pkg2_build_encrypt((void *)0xA9800000, ctxt.kernel, ctxt.kernel_size, &kip1_info);
DPRINTF("rebuilt pkg2\n");
} else {
//Read package2.
if (!_read_emmc_pkg2(&ctxt))
return 0;
DPRINTF("read pkg2\n");
memcpy((void *)0xA9800000, ctxt.pkg2, ctxt.pkg2_size);
}
}
se_aes_key_clear(8);
se_aes_key_clear(11);
//se_aes_key_clear(13);
//se_key_acc_ctrl(10, 0xFF);
se_key_acc_ctrl(12, 0xFF);
//se_key_acc_ctrl(13, 0xFF);
//se_key_acc_ctrl(14, 0xFF);
se_key_acc_ctrl(15, 0xFF);
//Clear 'BootConfig'.
memset((void *)0x4003D000, 0, 0x3000);
//pkg2_decrypt((void *)0xA9800000);
//sleep(10000);
//btn_wait();
//return 0;
//Lock SE before starting 'SecureMonitor'.
_se_lock();
vu32 *mb_in = (vu32 *)0x40002EF8;
vu32 *mb_out = (vu32 *)0x40002EFC;
*mb_in = 0;
*mb_out = 0;
//Wait for secmon to get ready.
cluster_boot_cpu0(ctxt.pkg1_id->secmon_base);
while (!*mb_out)
sleep(1);
//Signal 'BootConfig'.
*mb_in = 1;
sleep(100);
//Signal package2 available.
*mb_in = 2;
sleep(100);
*mb_in = 3;
sleep(100);
/*PMC(0x4) = 0x7FFFF3;
PMC(0x2C4) = 0xFFFFFFFF;
PMC(0x2D8) = 0xFFAFFFFF;
PMC(0x5B0) = 0xFFFFFFFF;
PMC(0x5B4) = 0xFFFFFFFF;
PMC(0x5B8) = 0xFFFFFFFF;
PMC(0x5BC) = 0xFFFFFFFF;
PMC(0x5C0) = 0xFFAAFFFF;*/
//TODO: Cleanup.
//display_end();
//Signal to continue boot.
*mb_in = 4;
sleep(100);
//Halt ourselves in waitevent state.
while (1)
FLOW_CTLR(0x4) = 0x50000000;
return 0;
}