hekate-emmc/bdk/mem/minerva.c
CTCaer e846f4576e bdk: minerva: l4t: adjust sdmmc1 la and freq table
- LA is tightened up
- Copied frequencies are now 204/408/800/1333/1600/OC (from 204/666/800/1600/OC)
2024-03-29 13:21:53 +02:00

282 lines
7.1 KiB
C

/*
* Copyright (c) 2019-2024 CTCaer
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <string.h>
#include <stdlib.h>
#include "minerva.h"
#include <ianos/ianos.h>
#include <mem/emc.h>
#include <soc/clock.h>
#include <soc/fuse.h>
#include <soc/hw_init.h>
#include <soc/t210.h>
#include <utils/util.h>
#define TABLE_FREQ_KHZ_OFFSET 0x40
#define TABLE_LA_REGS_T210_OFFSET 0x1284
#define TABLE_LA_REGS_T210B01_OFFSET 0xFA4
#define LA_SDMMC1_INDEX 6
extern volatile nyx_storage_t *nyx_str;
void (*minerva_cfg)(mtc_config_t *mtc_cfg, void *);
u32 minerva_init()
{
u32 tbl_idx = 0;
minerva_cfg = NULL;
mtc_config_t *mtc_cfg = (mtc_config_t *)&nyx_str->mtc_cfg;
//!TODO: Not supported on T210B01 yet.
if (hw_get_chip_id() == GP_HIDREV_MAJOR_T210B01)
return 0;
#ifdef BDK_MINERVA_CFG_FROM_RAM
// Set table to nyx storage.
mtc_cfg->mtc_table = (emc_table_t *)nyx_str->mtc_table;
// Check if Minerva is already initialized.
if (mtc_cfg->init_done == MTC_INIT_MAGIC)
{
mtc_cfg->train_mode = OP_PERIODIC_TRAIN; // Retrain if needed.
u32 ep_addr = ianos_loader("bootloader/sys/libsys_minerva.bso", DRAM_LIB, (void *)mtc_cfg);
minerva_cfg = (void *)ep_addr;
return !minerva_cfg ? 1 : 0;
}
else
{
mtc_config_t mtc_tmp;
mtc_tmp.mtc_table = mtc_cfg->mtc_table;
mtc_tmp.sdram_id = fuse_read_dramid(false);
mtc_tmp.init_done = MTC_NEW_MAGIC;
u32 ep_addr = ianos_loader("bootloader/sys/libsys_minerva.bso", DRAM_LIB, (void *)&mtc_tmp);
// Ensure that Minerva is new.
if (mtc_tmp.init_done == MTC_INIT_MAGIC)
minerva_cfg = (void *)ep_addr;
else
mtc_cfg->init_done = 0;
// Copy Minerva context to Nyx storage.
if (minerva_cfg)
memcpy(mtc_cfg, (void *)&mtc_tmp, sizeof(mtc_config_t));
}
#else
memset(mtc_cfg, 0, sizeof(mtc_config_t));
// Set table to nyx storage.
mtc_cfg->mtc_table = (emc_table_t *)nyx_str->mtc_table;
mtc_cfg->sdram_id = fuse_read_dramid(false);
mtc_cfg->init_done = MTC_NEW_MAGIC; // Initialize mtc table.
u32 ep_addr = ianos_loader("bootloader/sys/libsys_minerva.bso", DRAM_LIB, (void *)mtc_cfg);
// Ensure that Minerva is new.
if (mtc_cfg->init_done == MTC_INIT_MAGIC)
minerva_cfg = (void *)ep_addr;
else
mtc_cfg->init_done = 0;
#endif
if (!minerva_cfg)
return 1;
// Get current frequency
u32 current_emc_clk_src = CLOCK(CLK_RST_CONTROLLER_CLK_SOURCE_EMC);
for (tbl_idx = 0; tbl_idx < mtc_cfg->table_entries; tbl_idx++)
{
if (current_emc_clk_src == mtc_cfg->mtc_table[tbl_idx].clk_src_emc)
break;
}
mtc_cfg->rate_from = mtc_cfg->mtc_table[tbl_idx].rate_khz;
mtc_cfg->rate_to = FREQ_204;
mtc_cfg->train_mode = OP_TRAIN;
minerva_cfg(mtc_cfg, NULL);
mtc_cfg->rate_to = FREQ_800;
minerva_cfg(mtc_cfg, NULL);
mtc_cfg->rate_to = FREQ_1600;
minerva_cfg(mtc_cfg, NULL);
// FSP WAR.
mtc_cfg->train_mode = OP_SWITCH;
mtc_cfg->rate_to = FREQ_800;
minerva_cfg(mtc_cfg, NULL);
// Switch to max.
mtc_cfg->rate_to = FREQ_1600;
minerva_cfg(mtc_cfg, NULL);
return 0;
}
void minerva_change_freq(minerva_freq_t freq)
{
if (!minerva_cfg)
return;
// Check if requested frequency is different. Do not allow otherwise because it will hang.
mtc_config_t *mtc_cfg = (mtc_config_t *)&nyx_str->mtc_cfg;
if (mtc_cfg->rate_from != freq)
{
mtc_cfg->rate_to = freq;
mtc_cfg->train_mode = OP_SWITCH;
minerva_cfg(mtc_cfg, NULL);
}
}
void minerva_sdmmc_la_program(void *table, bool t210b01)
{
u32 freq = *(u32 *)(table + TABLE_FREQ_KHZ_OFFSET);
u32 *la_scale_regs = (u32 *)(table + (t210b01 ? TABLE_LA_REGS_T210B01_OFFSET : TABLE_LA_REGS_T210_OFFSET));
// Adjust SDMMC1 latency allowance.
switch (freq)
{
case 204000:
la_scale_regs[LA_SDMMC1_INDEX] = (la_scale_regs[LA_SDMMC1_INDEX] & 0xFF0000) | 50;
break;
case 408000:
la_scale_regs[LA_SDMMC1_INDEX] = (la_scale_regs[LA_SDMMC1_INDEX] & 0xFF0000) | 25;
break;
default:
la_scale_regs[LA_SDMMC1_INDEX] = (la_scale_regs[LA_SDMMC1_INDEX] & 0xFF0000) | 20;
break;
}
}
void minerva_prep_boot_freq()
{
if (!minerva_cfg)
return;
mtc_config_t *mtc_cfg = (mtc_config_t *)&nyx_str->mtc_cfg;
// Check if there's RAM OC. If not exit.
if (mtc_cfg->mtc_table[mtc_cfg->table_entries - 1].rate_khz == FREQ_1600)
return;
// FSP WAR.
minerva_change_freq(FREQ_204);
// Scale down to 800 MHz boot freq.
minerva_change_freq(FREQ_800);
}
void minerva_prep_boot_l4t(u32 oc_freq, u32 opt_custom)
{
if (!minerva_cfg)
return;
mtc_config_t *mtc_cfg = (mtc_config_t *)&nyx_str->mtc_cfg;
// Program SDMMC LA regs.
for (u32 i = 0; i < mtc_cfg->table_entries; i++)
minerva_sdmmc_la_program(&mtc_cfg->mtc_table[i], false);
// Add OC frequency.
if (oc_freq && mtc_cfg->mtc_table[mtc_cfg->table_entries - 1].rate_khz == FREQ_1600)
{
memcpy(&mtc_cfg->mtc_table[mtc_cfg->table_entries],
&mtc_cfg->mtc_table[mtc_cfg->table_entries - 1],
sizeof(emc_table_t));
mtc_cfg->mtc_table[mtc_cfg->table_entries].opt_custom = opt_custom;
mtc_cfg->mtc_table[mtc_cfg->table_entries].rate_khz = oc_freq;
mtc_cfg->table_entries++;
}
// Trim table.
int entries = 0;
for (u32 i = 0; i < mtc_cfg->table_entries; i++)
{
// Copy frequencies from 204/408/800 MHz and 1333+ MHz.
int rate = mtc_cfg->mtc_table[i].rate_khz;
if (rate == FREQ_204 ||
rate == FREQ_408 ||
rate == FREQ_800 ||
rate >= FREQ_1333)
{
memcpy(&mtc_cfg->mtc_table[entries], &mtc_cfg->mtc_table[i], sizeof(emc_table_t));
entries++;
}
}
mtc_cfg->table_entries = entries;
// Set init frequency.
minerva_change_freq(FREQ_204);
// Train the rest of the frequencies.
mtc_cfg->train_mode = OP_TRAIN;
for (u32 i = 0; i < mtc_cfg->table_entries; i++)
{
// Skip already trained frequencies and OC freq (Arachne handles it).
if (mtc_cfg->mtc_table[i].trained || mtc_cfg->rate_to == oc_freq)
continue;
// Train frequency.
mtc_cfg->rate_to = mtc_cfg->mtc_table[i].rate_khz;
minerva_cfg(mtc_cfg, NULL);
}
// Do FSP WAR and scale to 800 MHz as boot freq.
bool fsp_opwr_disabled = !(EMC(EMC_MRW3) & 0xC0);
if (fsp_opwr_disabled)
minerva_change_freq(FREQ_1333);
minerva_change_freq(FREQ_800);
// Do not let other mtc ops.
mtc_cfg->init_done = 0;
}
void minerva_periodic_training()
{
if (!minerva_cfg)
return;
mtc_config_t *mtc_cfg = (mtc_config_t *)&nyx_str->mtc_cfg;
if (mtc_cfg->rate_from == FREQ_1600)
{
mtc_cfg->train_mode = OP_PERIODIC_TRAIN;
minerva_cfg(mtc_cfg, NULL);
}
}
emc_table_t *minerva_get_mtc_table()
{
if (!minerva_cfg)
return NULL;
mtc_config_t *mtc_cfg = (mtc_config_t *)&nyx_str->mtc_cfg;
return mtc_cfg->mtc_table;
}
int minerva_get_mtc_table_entries()
{
if (!minerva_cfg)
return 0;
mtc_config_t *mtc_cfg = (mtc_config_t *)&nyx_str->mtc_cfg;
return mtc_cfg->table_entries;
}