Use the exact same clocks with HOS and utilize low jitter clock parents.
Add back our compatibility mode and the missing timeout clock parent.
Hekate main will continue to use PLLP clock parent for all.
hekate main always runs in compatibility mode (SDR82).
This ensures speed on boot process.
Nyx will first try SDR104.
If the sd card is a sandisk U1 and fails, it will try the compatibility mode.
After that it fallbacks to lower bus speeds.
Both support 1bit mode for broken sd card readers.
Having the new error checking in the sdmmc driver, allows for all that to work.
It can now fail instead of continuing, like how HOS reacts.
Using the key `emupath` on a boot entry will load the selected emuMMC.
This can also be forced by using the correct boot cfg storage bit and writing the path at the emummc path offset. Check readme for these.
This can only be used if the emuMMC was created via Nyx. because of the raw_based and file_based files that have emuMMC info.
(emupath=emuMMC/RAW1, emupath=emuMMC/SD00, etc)
This disables low battery monitor shutdown (LBM shutdown) on boot and checks if battery is enough.
The logic is as follows:
If battery is not enough:
- If not charging and 15s pass, it will re enable LBM shutdown and power off.
- If charging, it will wait until it is charged above the limit.
Screen will auto turn off to save power. A press on Power button or a change on charger, will enable it for another 15s.
If battery is enough:
- Enables LBM shutdown and continues with the boot process.
This fixes an edge case where the original label set was done with set_static_text, the next one with set_text and the text is at the same address.
The incomplete check would think that the text resides on heap and it would reallocate it as such, effectively corrupting .data on the next sets.
This patch applies the simpler init from HOS driver.
The most important change is enabling a feature that the fw supports:
Automatic tuning and calibration based on saved tuning values (running HOS only once saves these).
Switch touch panels have a 10-15px offset around the edges.
(10-1269, 10-709) / (15-1264, 15-704)
This allows touch driver to report a max of 0-1279, 0-719.
There is an edge case fixed where the whole would be freed and this would make use of a nullptr.
Additionally, remove usage of reserved names for vars and add comments on how it works.
Fixes a hang caused when rebooting 2 payload from L4T with old hekate in vendor partition.
L4T does not overwrite the nyx storage where the Minerva configuration is stored.
This makes new Minerva parse the wrong tables from old hekate and eventually hang the RAM, which causes an exception on BPMP.
It will now show erros for the following:
- Missing or old libsys_minerva.bso (DRAM training).
- Missing libsys_lp0.bso (LP0 sleep mode).
- Missing or old Nyx version
The manual optimization done dramatically increases performance in software color blending.
Isolated gains reach 20-30%.
Color blending calculates 2 +1 color channels instead of the expensive 1+1+1 calculations.
This is as best as it gets without going in asm optimizations.
3 users had issues with 602MHz.
This will probably bring the SoC binning compatibility to 100%.
Additionally, make it easy to change default boost frequency.
The tiny loss in perf, will be mitigated in Nyx. (It's actually even faster)
There's an increasing ammount of users that kill their batteries when forgetting their devices into AutoRCM / RCM mode.
This will now force a shutdown the moment the battery reaches 2.8V. Even if device is inside RCM mode.
Notice: We might need to increase the limit.
- Training and switch is now faster
- Compatibility checks: New Minerva does not allow old binaries. New binaries do not allow old Minerva
- MTC table is now in a safe region
- Periodic training period increased to every 250ms
- Allow reuse of unused sections that fit exactly to selected allocation size. Decreases fragmentation dramatically.
- Always allocate and align mapped memory to selected alignment. Avoids having fragmented unused maps that are not aligned.
- Use a static alignment based on BPMP and generally average cache line size. Boosts performance when MMU is used.